C-di-GMP Hydrolysis by Pseudomonas aeruginosa HD-GYP Phosphodiesterases: Analysis of the Reaction Mechanism and Novel Roles for pGpG
نویسندگان
چکیده
In biofilms, the bacterial community optimizes the strategies to sense the environment and to communicate from cell to cell. A key player in the development of a bacterial biofilm is the second messenger c-di-GMP, whose intracellular levels are modulated by the opposite activity of diguanylate cyclases and phosphodiesterases. Given the huge impact of bacterial biofilms on human health, understanding the molecular details of c-di-GMP metabolism represents a critical step in the development of novel therapeutic approaches against biofilms. In this study, we present a detailed biochemical characterization of two c-di-GMP phosphodiesterases of the HD-GYP subtype from the human pathogen Pseudomonas aeruginosa, namely PA4781 and PA4108. Upstream of the catalytic HD-GYP domain, PA4781 contains a REC domain typical of two-component systems, while PA4108 contains an uncharacterized domain of unknown function. Our findings shed light on the activity and catalytic mechanism of these phosphodiesterases. We show that both enzymes hydrolyse c-di-GMP in a two-step reaction via the linear intermediate pGpG and that they produce GMP in vitro at a surprisingly low rate. In addition, our data indicate that the non-phosphorylated REC domain of PA4781 prevents accessibility of c-di-GMP to the active site. Both PA4108 and phosphorylated PA4781 are also capable to use pGpG as an alternative substrate and to hydrolyse it into GMP; the affinity of PA4781 for pGpG is one order of magnitude higher than that for c-di-GMP. These results suggest that these enzymes may not work (primarily) as genuine phosphodiesterases. Moreover, the unexpected affinity of PA4781 for pGpG may indicate that pGpG could also act as a signal molecule in its own right, thus further widening the c-di-GMP-related signalling scenario.
منابع مشابه
Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover.
The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We ...
متن کاملInhibition of Pseudomonas aeruginosa biofilms: new molecular strategies targeting cyclic-di-GMP metabolism
Biofilms formed by bacterial pathogens are responsible of more than 70% of all infections in developed countries and are less sensitive to treatments with antimicrobial agents. The ubiquitous second messenger 3', 5'-cyclic diguanylic acid (c-di-GMP) is used in most bacteria to control the switch to the biofilm lifestyle; c-di-GMP has no counterpart in eukaryotic cells and thus it is an ideal ta...
متن کاملThe Structure of an Unconventional HD-GYP Protein from Bdellovibrio Reveals the Roles of Conserved Residues in this Class of Cyclic-di-GMP Phosphodiesterases
UNLABELLED Cyclic-di-GMP is a near-ubiquitous bacterial second messenger that is important in localized signal transmission during the control of various processes, including virulence and switching between planktonic and biofilm-based lifestyles. Cyclic-di-GMP is synthesized by GGDEF diguanylate cyclases and hydrolyzed by EAL or HD-GYP phosphodiesterases, with each functional domain often appe...
متن کاملOligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa.
The second messenger cyclic diguanylate (c-di-GMP) controls diverse cellular processes among bacteria. Diguanylate cyclases synthesize c-di-GMP, whereas it is degraded by c-di-GMP-specific phosphodiesterases (PDEs). Nearly 80% of these PDEs are predicted to depend on the catalytic function of glutamate-alanine-leucine (EAL) domains, which hydrolyze a single phosphodiester group in c-di-GMP to p...
متن کاملBiofilms and c-di-GMP Signaling: Lessons from Pseudomonas aeruginosa and other Bacteria
The cyclic-di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date compendium of c-di-GMP pathways connected to biofilm formation, biofilmassociated motilities and other functionalities in the ubiquitous and...
متن کامل